RP-HPLC Method for Simultaneous Estimation of Simvastatin and Coenzyme Q10 in their Combined Formulated Dosage Form

Patel Mahendra A, Mr. Hiren K Kadiker
Arihant School of Pharmacy and Bio research institute, Adalaj, Ghandhinagar, Gujarat, India.

ABSTRACT:
A Simple, precise, accurate and rapid RP-HPLC method developed and validated for the simultaneous estimation of Simvastatin and Coenzyme Q10 in pure and formulated dosage form. The quantification was carried out using symmetry C18 column, 250 x 4 mm, i.d, 5μm particle size in isocratic mode, with mobile phase compressing of Acetonitrile and Tetrahydrofuran (80:20). The flow rate was 1 ml/min and the detection was carried out by UV detector 254nm. The retention times were 6.47 and 3.64 min for Coenzyme Q10 and Simvastatin, respectively. Percentage recovery for SIM was 98.72-101.45%, while for COQ10, it was found to be in range of 98.00-101.27%. The method was validated as per ICH guideline.

Key words: HPLC system, Coenzyme Q10 and Simvastatin, UV detector.

INTRODUCTION:
Simvastatin (SIM) is (1S,3R,7S,8S,8aR)-8-{[4R]-4-hydroxy-6-oxooxan-2-yl}-3,7-dimethyl-1,2,3,7,8,8a-hexahydronaphthalen-1-yl 2,2-dimethylbutanoate. SIM is a selective and competitive inhibitor of 3-hydroxy-3-methylglutaryl -coenzyme A (HMG-CoA) reductase, the rate-limiting enzyme that converts 3-hydroxy-3-methylglutaryl coenzyme A to Mevalonate, a precursor of cholesterol1. SIM is a member of the class of Statins, used to treat hypercholesterolemia and related conditions and to prevent cardiovascular disease. It increases the number of hepatic LDL (Low Density Lipoprotein) receptors on the cell surface to enhance uptake and catabolism of LDL. Secondly, SIM inhibits hepatic synthesis of VLDL (Very Low Density Lipoprotein), which reduces the total number of VLDL and LDL particles2,3. Coenzyme Q10 is a 2-{[2E,6E,10E,14E,18E,22E,26E,30E,34E]-3,7,11,15,19,23,27,31,35,39-Decamethyl-2,6,10,14,18,22,26,30,34,38-tetracontadecaen-1-yl]-5,6-dimethoxy-3-methyl-2,5cyclohexadiene-1,4-dione4. Coenzyme Q10 is nutrient or dietary supplement with simvastatin. It’s mainly used in cardiovascular disease, Neurodegenerative disease, Diabetes, Cancer, Asthma Migraine, Immune disorders, HIV/AIDS, Male fertility. A daily dosage up to 3600mg was found to be tolerated by healthy as well as unhealthy person.

Simvastatin has a side effect of myopathy and Rhabdomyolysis. Number of clinical trial supports this and also it is supported by the official USFDA Site. This side effect is due to SIM block HMGCO A reductase because in synthetic pathway of cholesterol one side chain from fernesyl PP which is converted in to decaprinyl PP which combines with the 4-OH benzoate forms endogenous Coenzyme Q10. So SIM block not only Cholesterol synthesis but also coenzyme Q10 so side effect of SIM due to Coenzyme Q10 block so it has been prove that giving Coenzyme Q10 as a adjuvant with the SIM decrease the Myopathy and rhabdomylosis5,6.
A detailed survey of analytical literature for SIM and COQ10 revealed that several methods based on varied techniques, viz, HPLC, Spectrophotometry and High-Performance Thin-Layer Chromatography (HPTLC) and for determination in pharmaceuticals in combination with other drugs were reported.

The combination of this both drug are still under clinical trials and hence till date we have not come across any reported method for simultaneous estimation of the simvastatin and coenzyme Q10 during our continues reference work.

MATERIALS AND METHOD

Chemicals and Reagents

Acetonitrile for HPLC (RFCL Lmt, Rankem)
Tetrahydrofuran for HPLC (RFCL Lmt, Rankem).

Apparatus and Instrumentation

HPLC: Thermo fisher
UV-Visible Detector: UV 2000, ss420
Column :- Thermo Hypersil-Keystone, 250mm x 4mm, 5 μm
UV 1800 Spectrophotometer - Shimadzu
Shimadzu – AUX 220 balance Uni Bloc – Shimadzu
Sollicator-Soltec-Sonica Ultrasonic Cleaner (Spincotech Pvt. Ltd.)
Durasil-Pipettes of 2 and 5 ml capacity were used.
Glassware - Borosil-Volumetric flasks of 10 and 25ml capacity were used.

Chromatographic conditions

Stationary phase: Thermo Hypersil-Keystone, 250mm x 4mm, 5 μm
Mobile phase: Acetonitrile:tetrahydrofuran (80:20v/v)
Flow rate: 1.0 ml/min
Wavelength: 254 nm
Run time: 8min

EXPERIMENTAL

All chemicals and reagents used were of AR/HPLC grade.

Preparation of mobile phase

A degassed mixture of THF and Acetonitrile in the ratio of 20:80 (v/v) was prepared and the mixture was filtered through 0.45 μ membrane filters and it was degassed.

Preparation of SIM stock solution

Accurately weighed SIM (25 mg) was transferred to 25 ml volumetric flask and dissolved in mobile phase and diluted up to the mark with mobile phase to give a stock solution having strength 1 mg/ml (1000 µg/ml).

Preparation of COQ10 stock solution

Accurately weighed COQ10 (25 mg) was transferred into 25 ml volumetric flask and dissolved in mobile phase and diluted up to the mark with mobile phase to give a stock solution having strength 1 mg/ml (1000 µg/ml).

Working standard solution of COQ10

100 µg/ml of COQ10 working standard solution was prepared by diluting 2.5ml of stock solution to 25 ml with mobile phase.

Calibration curve

Calibration curves were prepared by taking appropriate aliquots of 0.5, 1.0, 1.5, 2.0, 2.5, 3.0ml of above mixed preparation and diluted with the mobile phase to get 5,10,15,20,25,30 µg/ml of both drugs. Representative Chromatogram of calibration curve for Simvastatin (5-30 µg/ml) and Coenzyme Q10 (5-30 µg/ml) is shown in Figure 2.

Procedure for analysis of tablet formulation

Total 20 tablets were accurately weighted and triturated with glass mortar and pestle. The powder equivalent to 10 mg of Simvastatin and 20 mg of Coenzyme Q10 was taken in 100 ml volumetric flask; mobile phase was added and the flask was kept in an ultrasonic bath for 10 min. The volume was made up to mark and the solution was filtered through 0.2 micron nylon membrane filter. 1ml of above filter solution was further diluted to 10 ml with mobile phase. The above solution was analyzed under optimized chromatographic conditions.

VALIDATION OF RP-HPLC METHOD

Linearity

Aliquots of standard solutions of Simvastatin and coenzyme Q10 in range of 5-30 μg/ml, was prepared from working standard solution and injected to system with stated chromatographic conditions and analyzed. The graph of peak area obtained versus respective concentration was plotted. The mean area with its standard deviation and % relative standard deviation of peak were calculated.

PRECISION

1. **Repeatability**

Three different standard solutions of Simvastatin and Coenzyme Q10 (10,15,20µg/ml) were prepared from working standard solution and injected three times to system with stated chromatographic conditions and analyzed.

2. **Intraday precision**

Standard solutions Simvastatin and coenzyme Q10 (5-30 µg/ml) were prepared from working standard solution and injected in to system with stated chromatographic conditions and analyzed, three times in a day.
LIMIT OF DETECTION (L.O.D.)
The L.O.D. was estimated from the set of 5 calibration curves is shown in eq. 1.

\[\text{LOD} = 3.3 \times (\text{S.D.}/\text{Slope}) \]

Where,
S.D. = Standard deviation of the Y- intercepts of the 5 calibration curves.
Slope = Mean slope of the 5 calibration curves.

RESULT AND DISCUSSION
For RP-HPLC method different mobile phases were tried and the mobile phase containing Acetonitrile and Tetrahydrofuran (80:20, v/v) was found to be optimal for obtaining well defined and resolved peaks with mean retention times 3.64 min and 6.47 min for SIM and COQ10 respectively. The representative chromatogram of the standard solution of mixture is shown in Figure 1.

Results were found to be linear in the concentration range of 5-30 mg/mL for both drugs. The correlation coefficients for the plots were 0.999 for SIM and 0.999 for COQ10. The proposed method was also evaluated by the assay of formulated tablets containing SIM and COQ10. The % assay was found to be 99.79 ± 0.542 for SIM and 101.69 ± 0.709 for COQ10 (mean ± S.D., n = 6). The method was found to be accurate and precise, as indicated by recovery studies and % RSD not more than 2. The summary of validation parameters of proposed HPLC method is given in Table 2.

CONCLUSION
The proposed method is simple, sensitive and reproducible and hence can be used in routine for determination of Simvastatin and Coenzyme Q10 in pharmaceutical preparations. Statistical analysis of the results has been carried out revealing high accuracy and good precision. The developed method can be used for routine quantitative estimation of Simvastatin and Coenzyme Q10 in pharmaceutical preparation.
Table 2. Summary of Validation parameters for Simvastatin and Amodiaquine

<table>
<thead>
<tr>
<th>Sr. no.</th>
<th>Parameters</th>
<th>SIM</th>
<th>COQ10</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Linearity Range (µg/ml)</td>
<td>5-30</td>
<td>5-30</td>
</tr>
<tr>
<td>2</td>
<td>Correlation coefficient</td>
<td>0.999</td>
<td>0.999</td>
</tr>
<tr>
<td></td>
<td>Precision (%C.V.)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Repeatability precision</td>
<td>0.27-1.78</td>
<td>0.4-1.78</td>
</tr>
<tr>
<td>2</td>
<td>Intraday precision</td>
<td>0.11-0.96</td>
<td>0.057-1.41</td>
</tr>
<tr>
<td>3</td>
<td>Interday precision</td>
<td>0.68-1.96</td>
<td>0.38-1.61</td>
</tr>
<tr>
<td>4</td>
<td>Accuracy (%recovery)</td>
<td>98.72-99.07</td>
<td>98.00-99.15</td>
</tr>
<tr>
<td>5</td>
<td>Limit of Detection (L.O.D.)</td>
<td>0.27</td>
<td>0.31</td>
</tr>
<tr>
<td></td>
<td>(µg/ml)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Limit of Quantitation (L.O.Q.)</td>
<td>0.82</td>
<td>0.95</td>
</tr>
<tr>
<td></td>
<td>(µg/ml)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

mobile phase CAN and THF (80:20) was found to be ideal for estimation of Simvastatin and Coenzyme Q10. The elution was as followed (For SIM RT-3.64 and COQ10 RT-6.47). The mean recovery was (For Arte 99.00% and Amo 98.83%).

ACKNOWLEDGEMENTS

The authors express their gratitude to TRC and Troikaa pharma for the gift sample of pure SIM and COQ10 respectively. Thanks are also extended to my guide MR. Hiren K Kadiker for his constant support.

REFERENCES