

JOURNAL OF PHARMACEUTICAL SCIENCE AND BIOSCIENTIFIC RESEARCH (JPSBR)

(An International Peer Reviewed Pharmaceutical Journal that Encourages Innovation and Creativities)

A Review: Validated Analytical Methods Developed on Antitubercular Drug, Rifampicin

Drashti Desai*, Megha Shah

Rofel, Shri G.M. Bilakhia, College Of Pharmacy, Vapi, Gujatat, India

ABSTRACT:

Rifampicin is a first line medication used as an anti-tubercular agent. Rifampicin acts by binding and inhibiting DNA dependent RNA polymerase. It is active against gram positive and negative both types of bacteria . The clinical and pharmaceutical analysis of this drug requires effective analytical procedures for quality control and pharmacodynamic and pharmacokinetic studies as well as stability study. An extensive survey of the literature published in various analytical and pharmaceutical chemistry related journals has been conducted and the instrumental analytical methods which were developed and used for determination of Rifampicin as single or combination with other drugs in bulk drugs, formulations and biological fluids have been reviewed. This review covers the time period from 1997 to 2014 during which 33 analytical methods including spectrophotometric methods and chromatographic method including HPLC, HPTLC, and miscellaneous method like HPLC-MS were reported. The application of these methods for the determination of Rifampicin in pharmaceutical dosage form and biological samples has also been discussed.

KEY WORDS: Rifampicin, UV spectroscopy, HPLC, HPLC-MS, HPTLC Cobalt complexes

Article history: Received 11 Feb 2015 Accepted 18 March 2015 Available online 01 May 2015

Citation: Desai D. A Review: Validated Analytical Methods Developed on Antitubercular Drug, Rifampicin. J Pharm Sci Bioscientific Res. 2015 5(3):254-265

For Correspondence:

Mr. Desai Drashti

Rofel, Shri G.M. Bilakhia, College Of Pharmacy, Vapi, Gujatat, India

Email: desaidrashti94@gmail.com

(www.jpsbr.org)

INTRODUCTION:

Mycobacteria are intrinsically resistant to most antibiotics. Because they grow slowly compared with other bacteria, antibiotics that are most active against growing cells are relatively ineffective. Mycobacterial cells can also be dormant and thus completely resistant to many drugs or get killed very slowly. The lipid-rich mycobacterial cell wall is impermeable to many agents. Mycobacterial species are intracellular pathogens, and organisms residing within macrophages are inaccessible to drugs that penetrate these cells poorly. Finally, mycobacteria are notorious for their ability to develop resistance. Combinations of two or more drugs are required to overcome these obstacles and to prevent emergence of resistance during the course of therapy. The response of mycobacterial infections to chemotherapy is slow, and treatment must be administered for months to years, depending on which drugs are used.¹

Tuberculosis is the most important communicable disease. The one-third of the world's population is infected by *Mycobacterium tuberculosis* according to the World Health organization(WHO) estimation. HIV-infected persons, immigrants from countries with high rates of tuberculosis, the homeless, health care professionals, intravenous drug users, persons taking immunosuppressive agents, and those in institutional settings, such as nursing homes and correctional facilities groups are at high risks for tuberculosis infection. There is a progressive increase in multidrugresistant (MDR) tuberculosis.²

Classification of tuberculosis:

- First line drugs- rifampicin, isoniazid, pyrazinamide, ethambutol and streptomycin (superior in efficacy and possess an acceptable degree of toxicity)
- II. **Second line drugs-** cycloserine,ethionamide, aminosalicylic acid, rifabutin, quinolones, capreomycin, viomycin, and thiacetazone (more toxic and less effective, and they are indicated only when the *M*. *tuberculosis* organisms are resistant to the first-line agents)²

To decrease the possibility of the emergence of resistant organisms, compound drug therapy is employed, involving the following:

- a first initial phase of about ² months consisting of three drugs used concomitantly: isoniazid , rifampicin, pyrazinamide (plus ethambutol if the organism is suspected to be resistant)
- a second, continuation phase, of ⁴ months, consisting of two drugs: isoniazid and rifampicin; longer-term treatment is needed for patients with meningitis, bone/joint involvement or drug-resistant infection. ³

Table -1 Antimicrobials Used in the Treatment of Tuberculosis.¹

Drug	Typical	Adult	Dosage ¹
First-line agents (in appr	ler of preferen	ce)	
Isoniazid	300 mg/d		
Rifampin	600 mg/d		
Pyrazinamide	25 mg/kg/	d	
Ethambutol	15–25 mg/	′kg/d	
Streptomycin	15 mg/kg/	d	
Second-line agents			
Amikacin	15 mg/kg/	d	
Aminosalicylic acid	8–12 g/d		
Capreomycin	15 mg/kg/	d	
Ciprofloxacin	1500 mg/d	l, divided	
Clofazimine	200 mg/d		
Cycloserine	500-1000	mg/d, divided	
Ethionamide	500–750 m	ng/d	
Levofloxacin	500 mg/d		
Rifabutin	300 mg/d ²		
Rifapentine	600 mg on	ce or twice we	ekly

¹Assuming normal renal function.

²150 mg/d if used concurrently with a protease inhibitor.

Table –2 Recommended Duration of Therapy for Tuberculosis.¹

Regimen (in Approximate Order of Preference)	Duration in Months
Isoniazid, rifampin, pyrazinamide	6
Isoniazid, rifampin	9
Rifampin, ethambutol, pyrazinamide	6
Rifampin, ethambutol	12
Isoniazid, ethambutol	18
All others	24

Rifampicin (Rifampin):

Rifampicin (Rifampin):

Mechanism of Action:

Rifampicin acts by inhibiting and binding to DNA-dependent RNA polymerase in prokaryotic but not in eukaryotic cells. It is one of the well known most active antituberculosis agents. It is also active against most Gram-positive bacteria as well as many Gram-negative species. It enters phagocytic cells and can kill intracellular microorganisms including the tubercle bacillus. Resistance can develop rapidly in a one-step process and due to chromosomal mutation is thought to be caused by chemical modification of microbial DNA-dependent RNA polymerase.³

Pharmacokinetic:

Rifampicin is readily absorbed from the gastrointestinal tract. The biological half-life of rifampicin in serum averages about 3 hours after a 600mg dose and increases to 5.1 hours after a 900 mg dose in normal subjects. After absorption, rifampicin (oral or iv) is rapidly eliminated in the bile, and an enterohepatic circulation ensues. Intestinal reabsorption is reduced by deacetylation, and elimination is

facilitated. With about half of this being unchanged rifampicin, up to 30% of a dose is excreted in the urine,.

On food ingestion, absorption of rifampicin is reduced. Rifampicin is widely distributed throughout the body. It is also present in many organs and body fluids, and also in cerebrospinal fluid. Rifampicin is about 80% protein bound. Most of the unbound fraction is not ionized and therefore is diffused freely in tissues.⁵

Pharmacodynamics:

Rifampicin has high activity against many organisms, Mycobacterium tuberculosis and M.leprae, including Staphylococcus aureus, coagulase-negative staphylocci, Listeria monocytogenes, Neisseria meningitidis, Haemophilus influenzae, Legionella spp., Brucella, some strains of E. coli, Proteus mirabilis, anaerobic cocci, Clostridium spp., and Bacteroides. It is also reported that rifampicin exhibits an immunosuppressive effect which has been seen in some animal experiments, but this may not be clinically significant in humans. Depending on the concentration of drug attained at site of infection, rifampicin may be bacteriostatic or bactericidal. The bactericidal actions are secondary to interfering with the synthesis of nucleic acids by inhibiting bacterial DNAdependent RNA polymers at the B-subunit thus preventing initiation of RNA transcription.⁶

Indications:

Clinical Uses²

Rifampicin, a first-line antitubercular drug is used in the treatment of all forms of pulmonary and extrapulmonary tuberculosis. It is an alternative to isoniazid in the treatment of latent tuberculosis infection. Rifampicin may also be combined with an antileprosy agent for the treatment of leprosy and to protect those in close contact with patients having H. influenza type B and N. meningitidis infection; and is also used innmethicillin-resistant staphylococcal infections, such as osteomyelitis and prosthetic valve endocarditis.

Adverse Reactions 2

The most commonly observed side effects are GI disturbances and nervous system symptoms, such as nausea, vomiting, headache, dizziness, and fatigue. A major adverse effect is Hepatitis, and the risk is highest in patients with underlying liver diseases and in slow isoniazid acetylators; if isoniazid and rifampin are combined, the rate of hepatotoxicity is increased. Rifabutin is commonly substituted for rifampin in the treatment of tuberculosis in HIV-infected patients. Hypersensitivity reactions, such as pruritus, cutaneous vasculitis, and thrombocytopenia, are seen in some patients, and an immune-mediated systemic flulike syndrome with thrombocytopenia also has been described.

Rifampicin imparts a harmless red-orange color to urine, feces, saliva, sweat, tears, and contact lenses. Patients should be advised of such discoloration of body fluids.

Different analytical methods for Rifampicin and its combination:

Development of new methods, provide determinations with maximum accuracy, which are responsible to increase the interest in analytical methods as such. They should enable to simultaneously determine the individual components in multicomponent preparations and in Dosage form as well as biological material. These developed validated Methods confirms them the appropriate quality of the product and of the analytical method used. These are different parameters that validate reliability of the results and enable comparing efficiency of the methods used. Validation parameters were done according to the ICH guideline.

Several techniques like HPLC [10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33], HPTLC [11,32], Spectroscopic methods [1, 2, 4, 5, 6, 7, 8, 9],. Colorimetric method [3], have been used for the determination of Rifampicin. Chromatographic methods have been extensively used and recommended. Since, these methods require complex and expensive equipment, provision for use and disposal of solvents, labour-intensive sample preparation procedures and personal skills in such techniques.

There was no review published covering all different analytical method used for the determination of Rifampicin. The high importance of Rifampicin in Tuberculosis prompted us to review the most important recent analytical methods for their analysis in pure forms, in different pharmaceutical dosage forms and in biological fluids reported so far in the literature. The present review comprises references covering the period from 1997 to 2014. The official method of determination of rifampicin was HPLC method in Indian Pharmacopoeia and spectroscopy and HPLC in British Pharmacopoeia.

Different analytical methods for Rifampicin and its combination:

SR NO.	DRUG	METHOD	DESCRIPTION	DETECTION AT	SPECIFICATION	REF NO.
1.	Rifapentine	UV	Chemito UV 2600 spectrophotometer with 1 cm matched quartz cells Y = 0.004x+ 0.024	478nm (0.1N HCl)	R²- 0.999 Linearity range -5-50μg/ml LOD -3.28 μg/ml(2.15) LOQ -9.96 μg/ml(6.25) %RSD -0.003985	7.
2.	Rifampicin & Piperine	2 nd dvt.	No intereference from the capsule excipients	 341nm for rifampicin (0 cross point for piperine) 241nm for piperine (0 cross point for rifampicin) 	R ² -0.999 Linearity range - 10-60 μg/ml for rifampicin & 2-20 μg/ml for piperine LOD = (μg/ml)- RIFA-1.65 PIPE- 0.57 LOQ =(μg/ml) RIFA-5.03 PIPE-1.75 Repeatability(%RSD) = RIFA-0.31 PIPE-0.37	8.
3.	Rifampicin	Visible	shimadzu double beam spectrophotometer UV- 140 A=0.0009+0.0119C Buffer solution (pH=7.0)	400-650nm (max at 510nm)	R²-0.9999Linearity range- Conc range:5-50µg/mlMolarabsorptivity(l/mole cm)-9.83x10³Sandell's sensitivity(µg / cm2 / 0.001 absorbance unit)-0.084Optimum photometric range:7.9-39.1µg/ml %RSD=1.90	9.
4.	Rifampicin and Isoniazid	Simultaneo us equation method)	Non interference of the excipients Solvent-ethanol	RIF- 337nm INH- 263nm	R ² - RIF- 0.9991 INH- 0.9998 Linearity range- RIF- 5-35 μg/ml INH- 5-25 μg/ml Molar absorptivity(L/molcm) RIF-25349 INH- 9341 LOD= RIF-1.653μg/ml INH-0.585 μg/ml INH-0.585 μg/ml INH-1.772 μg/ml Precision(%RSD)= RIF-0.578 INH-0.673	10.
5.	Rifampicin and Piperine	Q- Absorbanc e ratio	A shimadzu model 1700 double beam UV/Visible spectral width - 2 nm, wavelength accuracy- 0.5 nm & pair of 10 mm matched	In methanol RIF- 337nm PIPE- 337nm RIFA+PIPE- 387nm	R²-0.999 Linearity range- RIF- 5-40 μg/ml PIPE-2-20 μg/ml LOD= RIF-1.51 μg/ml PIPE-0.28 μg/ml	11.

			quartz cell		RIF+PIPE-0.80 and 0.32 LOQ= RIF- 4.6 μg/ml PIPE- 0.86 μg/ml RIFA+PIPE- 2.45 and 0.98 μg/ml %RSD= RIF-0.54 PIPE-0.091 RIF+PIPE-0.68 Precision: RIFA-0.14-0.71 PIPE-0.11-1.50 RIEA and PIPE-0.17-1 31	
6.	Rifampicin and Isoniazid	Visible & 1 st derivative	Buffer solution pH 7.4 as solvent	257nm(1 st derivative, HCl 0.012M)	Recovery- 99.03% for rifampicin & 100.01% for isoniazid	12.
7.	Isoniazid, rifampicin and Piperine	UV & RPLC- PDA Methods	2 chemometric methods applied- ILS and CLS Reversed phase: phenomenex Luna C18 column- gradient elution with mobile phase 0.05M Na ₂ HPO ₄ buffer pH 7 and acetonitrile Total run time: 12min	220-360nm with interval of 10nm	Linearity range- INH- 30-270 μg/ml RIF- 20-180 μg/ml PIPE- 1-9 μg/ml	13.
8.	Rifampicin, isoniazid, pyrazinamid e	Simultaneo us spectropho tometric by 1 st derivative UV spectropho tometry		RIF at ZCP for INH and PYZ(262.2 and 268.8) PYZ at ZCP for RIF and PYZ (254 and 268.8nm) PYZ at ZCP for INH and RIF (262.2 and 254 nm)		14.
9.	Isoniazid, rifampicin and Piperine	UV, RP- HPLC	Methanol and distilled water was used as diluents 2 nd RP-HPLC- acetonitrile as diluents Flow rate of 0.9mL/min	INH-262nm PIPE- 338nm RIFA-477nm	Correlation coefficient -0.995 Linearity range - INH- 12-34.5 µg/ml RIFA- 8-23 µg/ml PIPE-0.4-1.15 µg/ml	15.
10.	Rifampicin	HPLC	SP-C18 monolithic MP-Methanol: CAN :mono potassium phosphate (0.075 M):citric acid (1.0 M) (28:30:38:4, v/v) flow rate 2 mL/min	with UV detection at 254 nm	Linearity range- RQ- 1.5-60 µg/ml SV- 1-40 µg/ml 3-FR-1-40 µg/ml RIF- 5-200 µg/ml LOD=0.2 µg/ml LOQ= 1 µg/ml %RSD= 2.5%	16.
11.	Rifampicin	HPTLC	SP- Al backed silica gel	254nm	R ² -INH- 0.994	17.

	and		60 F _{act} plates		RIF- 0.997	
	Isoniazid		254		Linearity range-	
			IVIP-		100-700 ng per spot	
			n-hexane:2-			
			propanol:acetone:am-			
			monia:formic		RIF- 25 \pm 0.63ng	
			acid=3:3.8:2.8:0.3:0.1		LOQ =INH- 60 ± 1.05 ng	
			(\mathbf{y}/\mathbf{y})		RIF- 75 ± 1.12 ng	
			Resolved INH and RIE		%RSD=	
					INH=Conc (ng per spot)	
			with R_{f} values of 0.59 ±		200 0 17	
			0.02 and 0.73 ± 0.04,		200-0.17	
			respectively		300-0.26	
			. ,		600-0.19	
					RIF=	
					200- 0.37	
					300- 0.44	
					600- 0.38	
12	Pifampicin &		SD 150 V 46 mm id 5	227nm	Correlation coefficient 0.0071	10
12.	Ritampicin &	HPLC	SP- 150 X 4.6 mm 1.d, 5	337nm	Correlation coefficient-0.9971	18.
	Hydrochloro		μm Phenomenex ODS 2			
	thiazide		C18 column.		Linearity range-	
			MP - 40:60 % v/v		0.31 – 25.48 μg/ml	
			acetonitrile and 10mM			
			KH ₂ PO4		LOD =100ng/ml	
			(nH 3 2) flow rate of 1.0			
					LOQ=1µg/mi	
			\mathbf{R}_{t} for RIF and HC12 were			
			6.80 and 2.56 min,			
			respectively.			
13.	Rifampicin	HPLC	SP- An Ultrabase-C18	333nm	Linearity range-	19.
	·		column		0.1-1 and $1-50$ g/ml for	
			MP_{-} water (pH 2.27).		nlasma	
			$101F^{-}$ water (pri 2.27).		plasina	
			acetonitrile= $(40.60 \text{ V/V}),$		0.6-40_g/g for liver	
			flow-rate - 1 ml/min			
			Rt- 4 min.		0.025µg/ml for plasma	
					0.06 μg/g for liver	
					LOQ=	
					0.05 µg/ml for plasma	
					$0.25 \mu g/g$ for liver	
1/	Pifampicin		Stationary phase	222.6	p ² >0.09	20
14.	in	TIFLC		555.0		20.
	in .		a 5 µm C18		Linearity range- 0.1- 0.3 mg/	
	complex				ml for drug content in	
	(isoniazide		Mobile phase-		Rifamazid and from 1 - 3	
	and		water-methanol at		μg/ml for serum	
	serum)		a flow rate of 1 ml/min.		%RSD=	
	,				1)RIF in rifamazid capsules-	
			Rt- 12.8 min			
			Ntº 12.0 mm		2) BIE in corrum 0.027	
					2) KIF III SELUITI- 0.037	
15.	Serum	HPLC	SP- Phenomenex	335nm	Linearity range-	21.
	rifampicin		Prodigy ODS3 150mm x		2-20µmol/L	
			4.6mm, 5μm, 100Å			
			MP - 70% 0.1mmol/L			
			phosphate buffer pH			
			4.8 30% methanol			
			1.0, 30% methanol			
			FIOW: 1.UML/MIN		2	
16.	pyrazinamid	RP-HPLC	Stationary phase-	210nm	R ² - 0.9998	22.
	e ,isoniazid		pre-column		Linearity range-	
	rifampicin		derivatization with		PYP : 16.0–160 μg/ml	
	.and		phenethyl isocvanate		INH : 4.8–48.0 µg/ml	

	Ethambutol 2HCl		(PEIC)		RIF : 4.8–48.0 μg/ml EMB : 10.1–101.0 μg/ml	
			Mobile phase-		LOD=	
			gradient consisting of		PYR- 0.13 μg/ml	
			acetonitrile: phosphate		INH- 0.08 µg/ml	
			buffer (8 mM, pH 6.8)		RIF- 0.20 µg/ml	
			10:90v/v at		EMB- 0.10 µg/ml	
			Omin(gradient)		LOQ=	
			60:40v/v for 18min		PYR- 0.40 µg/ml	
			(linear gradient)		INH- 0.24 µg/ml	
			at a flow rate of 1.0		RIF- 0.60 µg/ml	
			ml/min		FMB- 0.30 µg/ml	
			,		Reproducibility (%RSD)	
					PYR-0.83	
					INH-0.86	
					RIF-0.66	
					EMB-0.95	
17	Rifamnicin &	ныс	SP- Kromasil C18 column	334nm	$\mathbf{R}^2 = 0.2$	23
17.	nanaverine		MP-	5541111	Linearity range-	25.
	нсі		ammonium acetate		$0.5-20\mu g/ml$	
			(20mM pH 4) & ACN		100=	
					$0.5 \mu g/ml$ in plasma	
					1.5 µg/ml in blood	
18	Rifamnicin	RP-HPLC	SP-C18 column	475nm	Linearity range-	24
10.	Manpien		MP-phosphate buffer	4751111	0.05-2011//gm/mL for plasma	24.
			nH 7 1: methanol(75:25		Good reproducibility	
			y/y)		(both interday and intraday)	
			V/V R = 2.54 min		(both interday and intraday)	
10	Rifampicin			at 225 nm in	Linearity range	25
19.	Manipicin		SP-C18 column	which standard	$0.5-250 \mu g/ml$	25.
			MP-	rifampicin	0.3-230µg/IIIL	
			Acetonitrile:monobasic	quinone (REP-	Good accuracy precision	
			potassium phosphate		specific sensitive selective	
			buffer solution 0.05 M	Qiv) was asea.	specific, schartive, selective	
			(28:62 v/v)			
			(38.02 // /)			
			The R_t of RFP and RFP-			
			QN were 7.81 and 12.26			
			minutes, resp.			
20.	Isoniazid	HPLC	SP- a C8 reversed phase		Correlation coefficient-	26.
	(INH),		column		0.9995	
	ritampicin		MD DIE and DDIE-90%			
	(RIF), and		NIF- RIF and DRIF-80%			
	pyrazinamid					
	e (PZA),		trifluoroacetic acid (TFA)			
	deacetylrifa		INH and PZA =3%			
	mpicin(DRIF)		acetonitrile/0.6% TEA			
21.	Rifampicin	HPLC	SP-isocratic conditions	254nm	Precise	27.
	and		with a octadecylsilane			
	Isoniazid		column			
			MP-Methanol (75%)			
			:0.02M Disodium			
			Hydrogen			
			Orthophosphate(25%)			
			with pH4.5 adjusted			
			with o-phosphoric acid.			
22.	Rifampicin	RP-HPLC	SP-a C18 column	254nm	Correlation coefficient-	28.

	(RMP) and desacetyl rifampicin(D RMP) Rifapentine(MP-0.05 M phosphate buffer: acetonitrile (55:45 v/v) R _t = DRMP-2.9min		Plasma- 0.9996 urine- 0.9943 linearity range - 0.25-15µg/ml for plasma 2.5-80µg/ml for urine	
	RPN)		RMP-4.8min RPN-10.5min		LOD- 0.1-0.25µg/ml LOQ- 1-2.5µg/ml Accuracy and precision good for both intra day and inter day	
23.	Rifampicin	HPLC-MS	MP-Acetonitrile :water		linearity range- 100-12800ng/mL	29.
24.	Rifampicin	RP-HPLC	SP-anODSC18(4.6x150mm, 3.5µm)analytical columnMP-potassiumdihydrogenphosphatebuffer(pH3adjusted	238nm using PDA detector	Correlation coefficient- 0.9999 linearity range- 10-50 ppm LOD= 0.026µg/ml	30.
			with o-phosphoric acid) and acetonitrile in the ratio of 50:50(v/v) The flow rate was		LOQ=0.087 µg/ml Theoretical plates- 4092.567 Tailing factor- 1.46	
25.	Rifampicin and piperine	RP-HPLC	SP-a Hypersil BDS C18 (25cm x 4.6mm, 5 μm) column,temp 25°C MP-Methanol: Acetonitrile (Buffer and Acetonitrile in the proportion of 55 : 45 (v/v) with apparent pH adjusted to 6.8) Flowrate-1.5ml/min R _t (min)- RIF= 3.5min PIPR= 7min Tailing factor- RIF= 1.1±0.3% PIPE=1±0.6%	341nm (200-400 nm)	Correlation coeffient- RIF=1 (Y= 23308x- 1898.2) PIPE=0.999 (y= 105066x-372.4) linearity range- RIF- 8-24μm/ml PIPE- 0.4-1.2 μg/ml Resolution= 8.93±0.8% RIF= LOD- 0.498 μg/ml LOQ- 1.51 μg/ml PIPE= LOD-0.081 μg/ml LOQ- 0.246 μg/ml Theoretical plates- RIF= 5631±0.7% PIPE= 13218±0.8%	31.
26.	Isoniazid, Rifampincin	Isocratic RP-HPLC	 SP- A Inertsil ODS (250*4.6*5μ) column Column temp. was 30°C MP-Water pH 4.5 adjusted with Sodium di hydrogen phosphate: Acetonitrile in the ratio of (40: 60, v/v) The flow rate was 1.0mL/min R_t= INH-2.953min RIF-3.382min 	274nm	Correlation coefficient- 0.99 for both linearity range- Y= 16646x for Isoniazid and y = 19288x for Rifampicin LOD= INH-2.359 RIF-2.896 LOQ= INH-7.864 RIF-9.6541 Theoritical plates= INH-6642 RIF-10333	32.

27.	Rifampicin and a flavonoid	RP-HPLC	SP- RP-18 column MP-	340nm	Correlationcoefficient->0.999	33.
	glycoside(CC -I)		acetonitrile: phosphate buffer, 50 mM, pH 5.0 in a ratio of 60:40 v/v; oven temperature, 40 OC; flow rate 0.8 ml min total run time-15min R t- RIF-4.779 CC-I-3.072		linearity range - 0.1-10 μg/mL for RIF 0.05-10 μg/ mL for CC-I in combination Precision values : RIF-1.08-2.77% CC-I-1.14-2.98% LOQ = RIF-0.10μg/mL CC-I-0.05μg/mL	
28.	Rifampicin, isonoazid	HPLC and wall-jet/ thin layer electroche mical detection	SP-Reversed phase C18 column (150mmx4.6mm, 5μm) MP- gradient elution Flow rate- 1mL/min	268nm	linearity range- 0.01-100μm for INH and RIF LOD= INH-0.3nM RIF-0.5nM (S/N=3)	34.
29.	Rifampicin, isonoazid, pyrazinamid e	RP-HPLC	SP- A Hypersil C18, 5 mm, 250 mm x 4.6 mm internal diameter column was maintained at 40°C MP- isocratic elution with potassium phosphate buffer (pH 6.0; 0.05 M) for 10 min, followed by linear gradient to potassium phosphate buffer (pH 6.0; 0.05 M)- methanol (40:60, v/v) in 5 min, isocratic elution at the same composition for a further 15 min and then linear gradient back to potassium phosphate buffer (pH 6.0; 0.05 M) in 5 min. The flow-rate was 1 ml/min	254nm	Analysis time is 35 minutes.	35.
30.	Rifampicin, isoniazid	Isocratic HPLC	SP -A shimadzu liq- cromatographic unit equipped with a C18 GraceVydac analytical column(250mmx4.5 mm, 5μm particle size) MP -0.05M sodium dihydrogen phosphate sol(pH 3.1) and acetonitrile (20:80) flow-rate set at 0.6 ml/min.	254nm	Correlation coefficient - 0.999 linearity range - good Flow rate set at 0.6ml/min Good accuracy, precision	36.
31.	Rifampicin, isonoazid,	HPLC	SP- Micro-bondpack C18, 4.6x250mm column		Retention time were measured on different	37.

	pyrazinamid e		Optimized using an artificial neural network(ANN) for data modelling. MP -Acetonitrile as solvent and tetrabutylammonium hydroxide(tBAH)- 42.5:57.5v/v), used to adjust pH 3.10		experimental condition(solvent, buffer type and pH)	
32.	Rifampicin, 3-Formyl rifamycin SV (3-FRSV) and isoniazid	HPTLC	MP- chloroform:methanol:w ater (80:20:2.5 v/v)	RIF-475nm and 507nm 3-FRSV- 457nm and 492nm	Linearity range- 3-FRSV was 2-10 µg/ml and 50-250 ng/spot for DW spectrophotometric method and HPTLC method, respectively, and 5-50 µg/ml for RIF using DW spectrophotometric method. The rate of degradation of RIF in presence of INH was almost two times more than that of RIF alone. Specific, accurate and reproducible RIF degrades by 12.4% to form 3-FRSV (RIF formulations) while in presence of INH the degradation is catalyzed to about 21.5% (RIF+INH formulations), in 45 min.	38.
33.	Rifampicin	HPLC	SP-C18 (150x4.6mm Phenomenex Gemini) MP-1.49gm of monosodium phosphate monohydrate, 0.31gm of disodium phosphate hetahydrate,400ml of acetonitrile, using 85% phosphoric acid to pH 5.87 Flow rate- 1.2mL/min	254nm	Correlation coefficient-0.995 Linearity range- 10-200mcg/ml Peak tailing-1.183 Theoretical plates- 4769.02 %RSD=0.18 Specificity(USP)=4.32	39.

DISCUSSION:

The presented review gives detail on various analytical methods published on Rifampicin and combination with other drug with different validation parameters. Various analytical methods like spectrophotometry, chromatography and in combinations are presented in under Table 2 . Developed spectroscopic methods mentioned in the above texts are rapid and far more economical than chromatographic methods but their destructive nature and lack of sensitivity is huge disadvantage for the estimation in biological fluids and impurities estimationn which is possible by chromatography method. In this way various analytical methods for the estimation of Rifampicin in bulk or in various matrixes like blood, serum, plasma, alone or in combination with other drugs is discussed. The presented information is useful for the researchers especially those involved in the development of different dosage forms and for Quality control of rifampicin and combination with other drug.

REFERENCES:

[1] Katzung B G., Masters S B., Trevor A J. Basic & Clinical Pharmacology, Mc Graw Hill Publicatin, North America,10th Edition (2007): 771-772.

[2] Craig C R. and Stitzel R E. Modern Pharmacology with Clinical Application. Little, brown and company Publication, Bostan, MA, 5th edition(1997):557.

[3] Rang H.P., Dale M.M., Ritter J.M., Flower R.J., Henderson G. Pharmacology. Elsevier publication, India, Edition-5th (2006): 649-652.

[4] <u>www.drugbank.ca/drugs/DB01045</u>. Accessed 13 june 2005.
[5] Sanofi-aventis new zealand limited 56 Cawley St Ellerslie, Auckland, New Zealand; Data Sheet- Rifadin, 27 May 2010.

[6] Firdaus R: Rifampicin- an overview; International journal of research in pharmacy and chemistry; (2013):3(1).

[7] Jain Priyanshu and Pathak Vinay Madhav. Development and validation of UV-visible spectrophotometric method for estimation of rifapentine in bulk and dosage form; Scholars Research Library, Der Pharma Chemica, 2013; 5(2):251-255 (http://derpharmachemica.com/archive.html)

[8] Khamar J C., Patel S A. Second Derivative Spectrophotometric Method For Estimation of Rifampicin and Piperine In their combined dosage form, International Research Journal Of Pharmacy, 2012; 3(4).

[9] Tella E D, Sunitha S., Garikipati. D K., T. Benjamin, N. Prasad, Tand Ch. Shechinah Felice. Assay of Rifampicin in Bulk and its Dosage Forms by Visible Spectrophotometry using Chloranilic Acid; International Journal of Chemical, Environmental and Pharmaceutical Research, January-April, 2012; 3(1): 64-67.

[10] Arifa Begum. SK, Basava R D and Rao R N. Simultaneous estimation of rifampicin and isoniazid in combined dosage form by a simple UV spectrophotometric method, Scolar research library, 2013; 5(3):419-426.

[11] Khamar J C. and Patel S A., Q-Absorbance Ratio Spectrophotometric Method for the Simultaneous Estimation of Rifampicin and Piperine in their Combined Capsule Dosage, Journal of Applied Pharmaceutical Science 02 (04), 2012: 137-141.

[12] Benetton S.A, Kedor-Hackmann E.R.M, Santoro M.I.R.M, Borges V.M. Visible spectrophotometric and firstderivative UV spectrophotometric determination of rifampicin and isoniazid in pharmaceutical preparations, Talanta, November 1998; 47(3): 639–643.

[13] Mansuri S R, Pathak A, Rajput S J *. Development and validation of chemometric assisted UV spectrophotometer and RPLC-PDA methods for the simultaneous in-vitro analysis of isoniazid, rifampicin and piperine in their pharmaceutical formulation; Indo American Journal Of pharmaceutical research(IAJPR.), 2014; 4(1) : 540-553.

[14] Rote A R and Sharma A K, Simultaneous Spectrophotometric Determination Of Rifampicin, Isoniazid And Pyrazinamide By First – Derivative UV Spectrophotometry In Combined Pharmaceutical Dosage Forms, Indian journal of Pharmaceutical Sciences, 1997; 59(3): 119-123.

[15] Shah U H, Shah A H. UV spectrophotometric and RP-HPLC methods for simultaneous estimation of isoniazid, rifampicin and piperine in pharmaceutical dosage form.

[16]. Jianfang Liua, b, Jin Suna, Wei Zhanga, Kun Gaoa, Zhonggui Hea, , HPLC determination of rifampicin and related compounds in pharmaceuticals using monolithic column, Journal of Pharmaceutical and Biomedical Analysis, 22 January 2008; 46(2): 405–409.

[17] Ali J., Ali N., Sultana Y., Baboota S., and Faiyaz S. Development and validation of a stability- indicating HPTLC method for analysis of antitubercular drugs, ACTA chromatographica, no.18, 2007: pg 168.

[18] Sriram S T. , Prasanthi B., Tata S, Ratna V J. *. Development and validation of high performance liquid chromatographic method for the determination of Rifampicin in human plasma, International Journal of Pharmacy and Pharmaceutical Sciences, ISSN- 0975-1491, 2012; 4(5).

[19] Ignacio Calleja, Mar'ıa J. Blanco-Pr'ıeto, Noelia Ruz, Mar'ıa Jesús Renedo,Mar'ıa Carmen Dios-Viéitez. Highperformance liquid–chromatographic determination of rifampicin in plasma and tissues, Journal of Chromatography A, 1031 (2004); 289–294. [20] Tatarczak Ma£gorzata, Flieger Jolanta and Szumi£o Halina. High performance liquid chromatographic determination of rifampicin in complex pharmaceutical preparation and in serum mycobacterium tuberculosis infected patients, Acta Poloniae Pharmaceutica ñ Drug Research,2005; 62(4): 251- 256.

[21] Woollard G, Madhavaram H, Chiu. W. Measurement of serum Rifampicin by high performance liquid chromatography with ultra violet detection, sample preparation and stability considerations, Department of Chemical Pathology, LabPlus, Auckland City Hospital, Auckland, New Zealand. geraldw@adhb.govt.nz

[22] Wang H, Cai C, Chu C, Liu J, Kong Y, Zhu M, Zhang T. A simple and rapid HPLC/UV method for simultaneous quantification of four constituents in anti-tuberculosis 4-FDC tablets by pre-column derivatization, Asian Journal of Pharmaceutical Sciences, 2012; 7(4): 303-309.

[23] Allanson, A.L. and Cotton, M.M. and Tettey, J.N.A. and Boyter, A.C. Determination of rifampicin in human plasma and blood spots by high performance liquid chromatography with UV detection: a potential method for therapeutic drug monitoring, Journal of Pharmaceutical and Biomedical Analysis, 2007; 44(4):963-969. ISSN 0731-7085

[24] Sabitha, P.; Ratna, J. Vijaya; Reddy, K. Ravindra. Development and validation of new RP-HPLC method with UV detection for the determination of rifampicin in plasma, Journal of Pharmacy Research, Oct2009; 2(10): 1561.

[25] Moreno-Exebio L¹, Grande-Ortiz M¹. Validation of a liquid chromatography method for rifampicin determination in human plasma, Rev Peru Med Exp Salud Publica, 2014; 31(1): 56-61.

[26] Smith PJ¹, van Dyk J, Fredericks A. Determination of rifampicin, isoniazid and pyrazinamide by high performance liquid chromatography after their simultaneous extraction from plasma, Int J Tuberc Lung Dis. 1999 Nov; 3(11 suppl 3): S325-8, discussion ¬S351-2.

[27] Shah Y, Khanna S., Jindal K.C., and Dighe V.S. Determination of rifampicin and isoniazid in pharmaceutical formulations by HPLC, 1992; 18(14):1589-1596 (doi:10.3109/03639049209040861)

[28] Kumar AK , Chandra I, Geetha R, Chelvi KS, Lalitha V, Prema G. A validated high-performance liquid chromatography method for the determination of rifampicin and desacetyl rifampicin in plasma and urine, Indian J Pharmacol, 2004; 36(4):231-233.

[29] Hartkoorn, Ruben C., Khoo, Saye, Back, David J., Tjia, John F., Waitt, Catriona J., Chaponda, Masautso, Davies, Geraint, Ardrey, Alison, Ashleigh, Samantha and Ward, Stephen A. (2007) A rapid and sensitive HPLC-MS method for the detection of plasma and cellular rifampicin, Journal of Chromatography B, 857 (1): 76-82. ISSN 1570-0232

[30] Kumar S. A, Debnath M, Rao J. V. L. N. Seshagiri, B. Chaitanya, Pavani D, G. P. Ramya, M. Ujjwala, P. R. N. Govinda Raj, P. Ganesh Babu. Rapid and Sensetive RP-HPLC analytical method development and validation for estimation of rifampicin in bulk as well as in pharmaceutical formulation by using PDA detector, IAJPR.2014; 4(3): 1561-1572.

[31] Kapuriya K G., Parmar P M., Topiya H R., Faldu S D. Method development and validation of rifampicine and piperine in their combined dosage form, International Bulletin of Drug Research., 1(2): 71-80.

[32] Thahaseen A, Reddy R Y. Development and validation of liquid chromatographic method for the simultaneous estimation of isoniazid and rifampicin in combined dosade form, Int. Res J Pharm. App Sci., 2014; 4(1):40-46.

[33] Bhusari S S, Bhat V, Koul M, Sharma S C, Tikoo M, Tikoo A K, Satti N K , Suri K A and Johri R K. Development and Validation of a RP-HPLC Method for the Simultaneous Determination of Rifampicin and a Flavonoid Glycoside - A Novel Bioavailability Enhancer of Rifampicin, Tropical Journal of Pharmaceutical Research, December 2009; 8 (6): 531-537.

[34] Hongling Yan, Yaping Zhou, Qingji Xie, Yi Zhang, Pei Zhang, Hualing Xiao, Wen Wang and Shuozhuo Yao. Simultaneous analysis of isoniazid and rifampicin by high-performance liquid chromatography with gradient elution and wall-jet/thin-layer electrochemical detection, **Anal. Methods**, 2014;**6**, 1530-1537.

[35] Thoithi GN, Kibwage IO, King'ondu O, Hoogmartens J. Liquid Chromatographic Separation of Isoniazid, Pyrazinamide and Rifampicin on a Reversed-Phase Silica Column, *East and central African journal of pharmaceutical sciences*,2002;5(1).

[36] Vamshi, Krishna T and Reddy, Sreenivasa M (2014). *Isocratic high performance liquid chromatographic (HPLC) determination of rifampicin in presence of isoniazid*, Research Journal of Pharmacy and Technology; 7 (3): 328-331. ISSN 0974-3618

[37] Glass, B.D., Agatonovic-Kustrin, S., Chen, Y-J., and Wisch, M.H. (2007). Optimization of a stability-indicating HPLC method for the simultaneous determination of rifampicin, isoniazid, and pyrazinamide in a fixed-dose combination using artificial neural networks, Journal of Chromatographic Science; 45(1): 38-44.

[38] Shishoo CJ, Shah SA, Rathod IS, Savale SS, Kotecha JS, Shah PB. Stability of rifampicin in dissolution medium in presence of isoniazid, International Journal of Pharmaceutics, 10 november 1999;190(1):109–123

[39] Bridget Sorenson, BS, CAPM Paul Whaley. Stability of rifampicin in SyrSpend SF, International Journal of Pharmaceutical Compounding, 2013-march/april; 17(2): 162-164.