Comparative Study for the Development and Validation of Analytical Methods for Simultaneous Estimation of Paracetamol and Ondansetron in Lupisetron-Plus, Vomikind-Plus and Myset-Plus Tablet Dosage Form

Ekta D. Patel¹, Pratik A. Patel², Dhwani A. Shah³, Kunjal L. Vegad⁴, Yogesh K. Patel⁵, Chhaya R. Macwana⁶

1. Assistant Professor, Department of Pharmacology Sharda School of Pharmacy, Gandhinagar, Pethapur, Gujarat, India
2. Research Student, Sharda School of Pharmacy, Gandhinagar, Pethapur, Gujarat, India
3. Assistant Professor, Department of Pharmacognosy, Sharda School of Pharmacy, Gandhinagar, Pethapur, Gujarat, India
4. Assistant Professor, Department of Pharmaceutical Chemistry, Sharda School of Pharmacy, Gandhinagar, Pethapur, Gujarat, India
5. Associate Professor, Department of Pharmaceutics, Sharda School of Pharmacy, Gandhinagar, Pethapur, Gujarat, India
6. Assistant Professor, Department of Pharmacognosy, Sharda School of Pharmacy, Gandhinagar, Pethapur, Gujarat, India.

ABSTRACT:

A RP-HPLC method is developed and validated for comparison of simultaneous estimation of paracetamol and ondansetron in Lupisetron-Plus, Vomikind-Plus and Myset-Plus Tablet Dosage Form. Paracetamol (PCM) act by inhibition of cyclooxygenase (COX) and has specific selectivity for COX-2. Paracetamol use for headache, backache and fever. Ondansetron (OND) act as selective serotonin 5-HT2 receptor antagonist use in nausea, nausea and vomiting due to chemotherapy. The chromatographic separation was done by using BDS hypersil C18 column (250 mm, 4.6 mm i.d., 5 μm) using stationary phase & Phosphate Buffer pH 5.5 : ACN (40:60 V/V) at ambient temperature. The detection wavelength was at 297 nm. The average retention time for PCM and OND were found to be 3.727 and 6.037min. The method was validated in terms of linearity, range, accuracy, precision, limit of detection (LOD) and limit of Quantitation (LOQ). Linearity for PCM and OND were found in the concentration range from 62.5-187.5 μg/ml (r² = 0.999) and 0.5-1.5 μg/ml (r² = 0.988). Accuracy of the method was studied by the recovery studies at three different levels 80%, 100% and 120% level. The percentage recovery was found to be within the limits of acceptance criteria with average recovery of 99.62 – 99.87% for PCM and 100.32 – 100.62% for OND. The high precision of proposed method is confirmed by % RSD below 2.0 for repeatability. Thus the proposed method was successfully applied for simultaneous estimation of paracetamol and Ondansetron from Lupisetron-Plus tablet dosage form for routine analysis.

KEY WORDS: Paracetamol, Ondansetron, Linearity, Accuracy, Lupisetron-Plus

1. INTRODUCTION

1.1 Paracetamol

Acetaminophen also known as Paracetamol (PCM), shows analgesic and antipyretic property. The therapeutic effect of PCM are same as salicylate, but it lacks anti-inflammatory, anti-platelet, and gastric ulcerative effects. Figure: 1 shows structure of Paracetamol [1, 2]. PCM is official in Indian, British and United State Pharmacopeia [3,4,5].
1.2 Mechanism of Action: The mechanism of action by which paracetamol act was still speculative. Literature shows that PCM act by inhibition of cyclooxygenase (COX). Although PCM selectively act through COX-2 [1,2].

1.3 Ondansetron

Ondansetron (OND) is a White or almost white amorphous powder. OND is an effective anti-emetic agent. The high cost of brand name Ondansetron initially limits its use to control postoperative nausea, vomiting and chemotheraphy-induced nausea and vomiting, radiation therapy and surgery. It blocks serotonin receptors in the vomiting center and on nerves supplying the digestive system. Figure: 2 shows structure of Ondansetron [6,7,8]. OND is official in United State Pharmacopeia [5].

1.4 Mechanism of Action: Ondansetron is a selective serotonin 5-HT3 receptor antagonist. The antiemetic activity of ondansetron through inhibition of 5-HT3 receptors which is present both centrally in medullary chemoreceptor zone and peripherally in GI tract [6,7,8].

1.5 Introduction to dosage form

Lupisetron PLUS Tablet is use for Nausea and vomiting caused by chemotherapy or radiotherapy, Headache, Toothache, Ear pain, Joint pain, Periods pain and other conditions. Lupisetron Plus Tablet contains Ondansetron, and Paracetamol as active ingredients. Lupisetron Plus Tablet works on chemoreceptor trigger zone center in brain that controls vomiting or nausea [9].

Vomikind PLUS Tablet control postoperative, chemotherapy-induced, radiation therapy induces and surgery induces vomiting and nausea, headache, migraine, toothache, neuralgia, myalgia, menorrhea, pain in trauma and burns. Vomikind PLUS Tablet contains Ondansetron, and Paracetamol as active ingredients. Vomikind Plus Tablet works on small intestine and brain that controls vomiting or nausea, increasing the pain threshold and increases the blood flow across the skin, heat loss and sweating [10,11].

Myset- PLUS Tablet prescribed for pain in flu, Fever, Headache, Cold, Ear pain, menstruation pain, Tooth pain, Joint pain, Nausea and vomiting caused by chemotherapy or radiotherapy.

Myset- PLUS Tablet contains Ondansetron, and Paracetamol as active ingredients. Tablet that inhibits a chemical messenger that can trigger nausea and vomiting and reduce the threshold of pain [12,13].

1.6 Available marketed formulations:

1. Brand Name: Lupisetron- PLUS
 Manufacturer: Lupin pharmaceutical Ltd.
2. Brand Name: Vomikind PLUS
 Manufacturer: Mankind Pharmaceuticals Pvt. Ltd
3. Brand Name: Myset- PLUS
 Manufacturer: Captab Biotec

1.7 Ratio of Drug: Paracetamol : Ondansetron (500 mg : 4 mg)

The review of literature revealed that couple of analytical methods including UV-Spectrophotometry and HPLC have been reported for paracetamol and ondansetron individually or with other combinations. But there is no HPLC validation method was reported for this combination of drugs. So, there is conspicuous regerance of interest to develop simple and cost effective RP-HPLC method.

2. MATERIALS AND METHODS

2.1 Determination of wavelength for maximum absorbance

Paracetamol (125 µg/ml) solution and Ondansetron (1 µg/ml) solution were separately prepared in mobile phase. Both solution were scanned between 200-400 nm in Double beam UV-visible spectrophotometer (Shimadzu, model 1800). From the overlay spectra of Paracetamol and Ondansetron, the wavelength was selected. Both the components show reasonably good response at 297 nm which is shown in Figure 3.

2.2 Chromatographic conditions

The C18 (250 mm x 4.6 mm i.d., 5 µm particle size) column was used for chromatographic separations. The analytical wavelength was set at 297 nm and samples 20 µl were injected. The chromatographic separations were done by using mobile phase comprised of 0.02 M potassium dihydrogen phosphate Buffer (pH adjusted to 5.0 ± 0.1 using 1% orthophosphoric acid) and Acetonitrile (ACN) in the proportion of 60 : 40 (%)v/v) filtered through 0.45 µm filter (Millipore) and deaerated in ultrasonic bath. Mobile phase was pumped at a flow rate of 1.0 ml/min at optimum temperature. (Figure 4 and 5)
2.3 Preparation of mobile phase

Buffer Solution : 2.72 g of Potassium dihydrogen phosphate was accurately weighed and dissolved in 1000 ml of HPLC water (0.02 M potassium dihydrogen phosphate) then pH 5.0 ± 0.1 was adjusted with 1% Ortho Phosphoric Acid.

Mobile Phase : Phosphate Buffer : ACN (60 : 40 %v/v)

2.4 Preparation of stock solution: Paracetamol (125 µg/ml) and Ondansetron (1 µg/ml)

An accurately weighed quantity of standard Paracetamol (125 µg/ml) and Ondansetron (1 µg/ml) were transferred in to 100 ml volumetric flasks and volume was made up to mark with methanol to get Paracetamol (125 µg/ml) and Ondansetron (1 µg/ml).

2.5 Preparation of calibration curve

Make the Serial of dilution with methanol to get final concentration of Paracetamol having concentration range 62.5-187.5 µg/ml (62.5,93.75,125,156.25,187.5 µg/ml) and Ondansetron 0.5-1.5 µg/ml (0.5,0.75,1.0,1.25,1.5 µg/ml). Plot the graph for area vs. time to get calibration curve. (Table 1)

2.6 Validation of the developed method

Validation of the developed method was performed according to the International Conference on Harmonization (ICH Guidelines Q2R1) [13].

1. Specificity
2. Linearity
3. Range
4. Accuracy
5. Precision
6. Detection limit
7. Quantitation limit
8. Robustness
9. System suitability testing

2.6.1 Specificity

Specificity of an analytical method is its ability to measure the analyte accurately and specifically in the presence of component that may be expected to be present in the sample matrix. Chromatograms of standard and sample solutions of PCM and OND were compared.

2.6.2 Linearity and range

The linearity of the response for Paracetamol and Ondansetron was determined by preparing standard solutions with concentration range of 62.5-187.5 µg/ml (62.5,93.75,125,156.25,187.5 µg/ml) Paracetamol and 0.5-1.5 µg/ml (0.5,0.75,1.0,1.25,1.5 µg/ml) Ondansetron. The calibration curves of Paracetamol and Ondansetron shown in Figure and respectively indicate that the response is linear over the concentration range by correlation coefficient (r) value 0.999 for Paracetamol and 0.994 for Ondansetron.

2.6.3 Accuracy (n = 3)

It was carried out to determine the suitability and reliability of the proposed method. Accuracy was determined by calculating the %Recovery of Paracetamol and Ondansetron from the marketed formulation by the standard addition method in which, known amounts of standards powder of PCM and OND at 80%, 100% and 120% levels were added to the preanalysed samples. The recovered amounts of PCM and OND were calculate dated and %Recovery was reported.

2.6.4 Precision

It provides an indication of random error in results and was expressed as% Relative standard deviation.

a. Repeatability

The repeatability was checked by repeatedly (n=6) injecting125µg/ml PCM and 1µg/ml OND, sample and recording the responses.

b. Intraday Precision

Intraday precision was determined by assay of sample solution three times in a day for three different concentrations (Combined standard samples of concentrations 62.5,125,187.5µg/ml for PCM and 0.5,1.0,1.5 µg/ml for OND).

c. Interday Precision

Interday precision was determined by an assay of sample solution on three different days for three different concentrations (Combined standard samples of concentrations 62.5,125,187.5µg/ml for PCM and 0.5,1.0,1.5 µg/ml for OND).

2.6.5 Limit of Detection (LOD) and Limit of Quantitation (LOQ)
According to the ICH recommendation, the approach based on the standard deviation (SD) of the response and slope was used for determining the LOD and LOQ values. LOD = 3.3 σ/S
LOQ = 10 σ/S

Where,
σ = Standard deviation of response and
S = Slope of calibration curve.

2.7 Assay of pharmaceutical dosage form

- Twenty Tablets were weighed accurately. Powder equivalent to 125 mg of Paracetamol and 1 mg of Ondansetron was weighed and transferred in a 100 ml volumetric flask and mobile phase was added.
- This solution was sonicated for 15 minutes and final volume was made to the mark with mobile phase. The solution was filtered through Whatman filter paper No. 41.
- The filtrate 1 ml was transferred in a 10 ml volumetric flask and diluted to the mark with mobile phase and then, Take 1 ml was transferred in a 10 ml volumetric flask and diluted to the mark with mobile phase to obtain Paracetamol (125 µg/ml) and Ondansetron (1 µg/ml). Concentration was calculated by regression equation method and % Assay was calculated.
- Applicability of proposed method was tested by analyzing tablet formulations. The results are shown in Tables.

3. RESULTS AND DISCUSSION

3.1 Specificity

No interference of peaks were found in the chromatogram indicating that excipients used in the dosage form did not interfere with the estimation of the drugs by the proposed method for the simultaneous estimation of paracetamol and ondansetron in the combined dosage form, hence the method is specific (Figure 6,7,8,9,10).

3.2 Linearity and Range

The linearity of the response for Paracetamol and Ondansetron was determined by preparing standard solutions with concentration range of 62.5-187.5 µg/ml Paracetamol and 0.5-1.5 µg/ml Ondansetron. The calibration curves of Paracetamol and Ondansetron shown in Figure and respectively indicate that the response is linear over the concentration range by correlation coefficient (r) value 0.999 for Paracetamol and 0.994 for Ondansetron. (Table 2, 3, 4 and Figure 11, 12)

3.3 Accuracy (% Recovery)

Accuracy of the methods was assured, involving analysis of formulation samples to which certain amounts of authentic drugs were added. The resulting mixtures were assayed, and the results obtained for both drugs were compared to those expected. The good recoveries prove the good accuracy of the proposed methods. (Table 5)

3.4 Precision and repeatability

The precision of the method was demonstrated by inter-day and intra-day variation studies. In the intra-day studies, three repeated injections of standard solutions were made and the response factor of drug peaks and percentage RSD were calculated. In the inter-day variation studies, three injections of standard solutions were made for three consecutive days and response of drug peaks and percentage RSD were calculated. From the data obtained, the developed RP-HPLC method was found to be precise. (Table 6 and 7)

3.5 Assay of formulation

The tablet of Vomikind PLUS, Lupisetron-PLUS and Myset-PLUS of different manufacturer were used for the comparative study. (Table 8)

The objective of the proposed work was to develop, validate and compare the novel analytical method for simultaneous estimation of paracetamol and ondansetron in three different pharmaceutical formulations according to ICH guidelines. There are so many methods for the estimation of single drug and combination of two or more drug such as UV, HPLC, R-HPLC, LC-MS etc. But, there is no one specific method available for simultaneous estimation of Paracetamol and Ondansetron. In view of the above fact, a simple RP-HPLC method was planned to develop with high sensitivity, accuracy, precision with costs effective.

On trial and error basis so many compositions of mobile phase were used. The good results were obtained with 0.02 M potassium dihydrogen phosphate (pH adjusted to 5.5 ± 0.1 using orthophosphoric acid) Buffer and ACN in the proportion of 40 : 60 (v/v) at 1.0 ml/min flow rate. The retention times were 3.727 min for PCM and 6.037 min
for OND. The optimum wavelength for detection was set at 297 nm for better detection for both drugs. The proposed HPLC method was validated for precision, accuracy studies and the results were within the range thus the method is precise and more accurate. There is no significant changes in the results, thus the method is more robust. The optical regression characteristics and validation parameters are shown in Table 9.

4. CONCLUSION

The proposed HPLC method was found to be simple, precise, accurate, linear, robust and rapid for simultaneous determination of paracetamol and ondansetron in tablet dosage form labeled Lupisetron-PLUS, Vomikind-PLUS and Myset-PLUS. The developed method shows good resolution between paracetamol and ondansetron with short analysis time (10 min). Results are in good agreement with claim which indicates there is no interference of routinely used excipients. The proposed HPLC method was accurately and easily applied for determination of PCM and OND from combined dosage form for regular monitoring, pharmaceutical manufacturing and in research study. There is no any difference was found between the data of three formulation. The percentage of PCM and OND was found to be satisfactory, which is comparable with the corresponding label claim.

CONFLICT OF INTEREST

The author declared that there is no conflict of interest.

ACKNOWLEDGEMENT

It is very great pleasure and proud sense of reverence that I express my gratitude and thanks to Dr. Yogesh K. Patel principal of the Sharda School of pharmacy.

5. REFERENCES

TABLES

<table>
<thead>
<tr>
<th>System Suitability Parameters</th>
<th>Paracetamol</th>
<th>Ondansetron</th>
</tr>
</thead>
<tbody>
<tr>
<td>Retention Time (min)</td>
<td>3.727 ± 0.021</td>
<td>6.037 ± 0.033</td>
</tr>
<tr>
<td>Tailing factor</td>
<td>1.33 ± 0.018</td>
<td>1.38 ± 0.015</td>
</tr>
<tr>
<td>Theoretical plate</td>
<td>4328 ± 79.238</td>
<td>7268 ± 102.627</td>
</tr>
<tr>
<td>Resolution</td>
<td>9.06 ± 0.061</td>
<td></td>
</tr>
</tbody>
</table>
Table 2: Linearity data for PCM

<table>
<thead>
<tr>
<th>Concentration (μg/ml)</th>
<th>Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>62.5</td>
<td>2727.71</td>
</tr>
<tr>
<td>93.75</td>
<td>4022.60</td>
</tr>
<tr>
<td>125</td>
<td>5506.61</td>
</tr>
<tr>
<td>156.25</td>
<td>6780.15</td>
</tr>
<tr>
<td>187.5</td>
<td>8249.43</td>
</tr>
</tbody>
</table>

Table 3: Linearity data for Ondansetron

<table>
<thead>
<tr>
<th>Concentration (μg/ml)</th>
<th>Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>337.08</td>
</tr>
<tr>
<td>0.75</td>
<td>498.73</td>
</tr>
<tr>
<td>1</td>
<td>682.49</td>
</tr>
<tr>
<td>1.25</td>
<td>782.53</td>
</tr>
<tr>
<td>1.5</td>
<td>1025.21</td>
</tr>
</tbody>
</table>

Table 4: Data of regression analysis of PCM and OND

<table>
<thead>
<tr>
<th>Drug</th>
<th>Straight line equation of Calibration curve</th>
<th>Correlation coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCM</td>
<td>Y = 44.16x – 63.09</td>
<td>0.999</td>
</tr>
<tr>
<td>OND</td>
<td>Y = 664.0x + 1.188</td>
<td>0.988</td>
</tr>
</tbody>
</table>

Table 5: Determination of Accuracy of PCM And OND

<table>
<thead>
<tr>
<th>Drug</th>
<th>Amount Taken (μg/ml)</th>
<th>Amount added (μg/ml)</th>
<th>Amount found (μg/ml)</th>
<th>% Recovery ± S.D (n=3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paracetamol</td>
<td>62.5</td>
<td>50</td>
<td>49.94</td>
<td>99.87±1.0 3</td>
</tr>
<tr>
<td></td>
<td>62.5</td>
<td>62.5</td>
<td>62.27</td>
<td>99.62±0.5 8</td>
</tr>
<tr>
<td></td>
<td>62.5</td>
<td>75</td>
<td>74.73</td>
<td>99.64±0.4 1</td>
</tr>
<tr>
<td>Ondansetron</td>
<td>0.5</td>
<td>0.4</td>
<td>0.401</td>
<td>100.62±1.12</td>
</tr>
<tr>
<td></td>
<td>0.5</td>
<td>0.5</td>
<td>0.501</td>
<td>100.33±0.64</td>
</tr>
<tr>
<td></td>
<td>0.5</td>
<td>0.6</td>
<td>0.602</td>
<td>100.32±0.49</td>
</tr>
</tbody>
</table>

Table 6: Precision study of PCM

<table>
<thead>
<tr>
<th>Drug</th>
<th>Concentration (μg/ml)</th>
<th>Intra-day precision</th>
<th>Inter-day precision</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean ± S.D (n=3)</td>
<td>% RSD</td>
<td>Mean ± S.D (n=3)</td>
</tr>
<tr>
<td>Paracetamol</td>
<td>62.5</td>
<td>2710.8 ±13.36</td>
<td>0.4</td>
</tr>
</tbody>
</table>

Table 7: Repeatability study of PCM and OND

<table>
<thead>
<tr>
<th>Conc. (μg/ml)</th>
<th>Mean ± S.D (n=6)</th>
<th>% RSD</th>
<th>Conc. (μg/ml)</th>
<th>Mean ± S.D (n=6)</th>
<th>% RSD</th>
</tr>
</thead>
<tbody>
<tr>
<td>125</td>
<td>5462.6 ±19.07</td>
<td>0.3</td>
<td>8189.7 ±18.26</td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td>187.5</td>
<td>1</td>
<td>0.2</td>
<td>2</td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>332.58 ±3.04</td>
<td>0.9</td>
<td>333.96 ±2.48</td>
<td>0.7</td>
<td></td>
</tr>
<tr>
<td>1.5</td>
<td>672.72 ±11.72</td>
<td>1.7</td>
<td>673.49 ±9.70</td>
<td>1.4</td>
<td></td>
</tr>
<tr>
<td>1015.9</td>
<td>1 ± 8.52</td>
<td>0.8</td>
<td>1013.39 ±11.62</td>
<td>1.1</td>
<td></td>
</tr>
</tbody>
</table>

Table 8: Assay result of Vomikind-PLUS, Lupisetron-PLUS and Myset-PLUS

<table>
<thead>
<tr>
<th>Formulation</th>
<th>Paracetamol</th>
<th>Ondansetron</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>% Amount Labeled</td>
<td>% Amount Found</td>
</tr>
<tr>
<td></td>
<td>(mg)</td>
<td>(mg)</td>
</tr>
<tr>
<td>Vomikind-PLUS</td>
<td>500</td>
<td>486.49</td>
</tr>
<tr>
<td>Lupisetron-PLUS</td>
<td>500</td>
<td>486.49</td>
</tr>
<tr>
<td>Myset-PLUS</td>
<td>500</td>
<td>486.33</td>
</tr>
</tbody>
</table>

Table 9: Optical Regression characteristics and validation parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Paracetamol</th>
<th>Ondansetron</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calibration Range</td>
<td>62.5-187.5 μg/ml</td>
<td>0.5-1.5 μg/ml</td>
</tr>
<tr>
<td>Regression</td>
<td>y = 44.16x -</td>
<td>y = 664.0x +</td>
</tr>
<tr>
<td>Equation</td>
<td>63.09 +1.188</td>
<td>664</td>
</tr>
<tr>
<td>Slope (m)</td>
<td>44.16</td>
<td>664</td>
</tr>
<tr>
<td>Intercept (c)</td>
<td>63.09</td>
<td>1.188</td>
</tr>
<tr>
<td>Correlation co-</td>
<td>0.999</td>
<td>0.988</td>
</tr>
</tbody>
</table>
efficient(r2)
Intraday (% RSD, n = 3) | 0.22 – 0.49 | 0.83 – 1.74
Interday (% RSD, n = 3) | 0.22 – 0.35 | 0.74 – 1.44
Detection limit (LOD) | 4.452 µg/ml | 0.169 µg/ml
Quantification Limit (LOQ) | 13.491 µg/ml | 0.512 µg/ml

FIGURES

Figure: 1 Structure of Paracetamol

Figure 3: Overlay spectra of Paracetamol (125 µg/ml) and Ondansetron (1 µg/ml) for determination of wavelength for maximum absorbance

Figure: 4 HPLC blank chromatogram

Figure: 5 HPLC chromatogram of Paracetamol (125 µg/ml) and Ondansetron (1 µg/ml)

Figure: 6 Chromatogram of mobile phase

Figure: 7 Chromatogram of standard PCM

Figure: 8 Chromatogram of standard OND

Figure 9: Chromatogram of sample containing PCM (125 µg/ml) and OND (1 µg/ml)
Figure 10: Chromatogram of combined PCM (125µg/ml) and OND (1µg/ml) from standard solution

Figure 11: Calibration curve of Paracetamol (62.5-187.5µg/ml)

Figure no: 12 Calibration curve of Ondansetron (0.5-1.5µg/ml)